

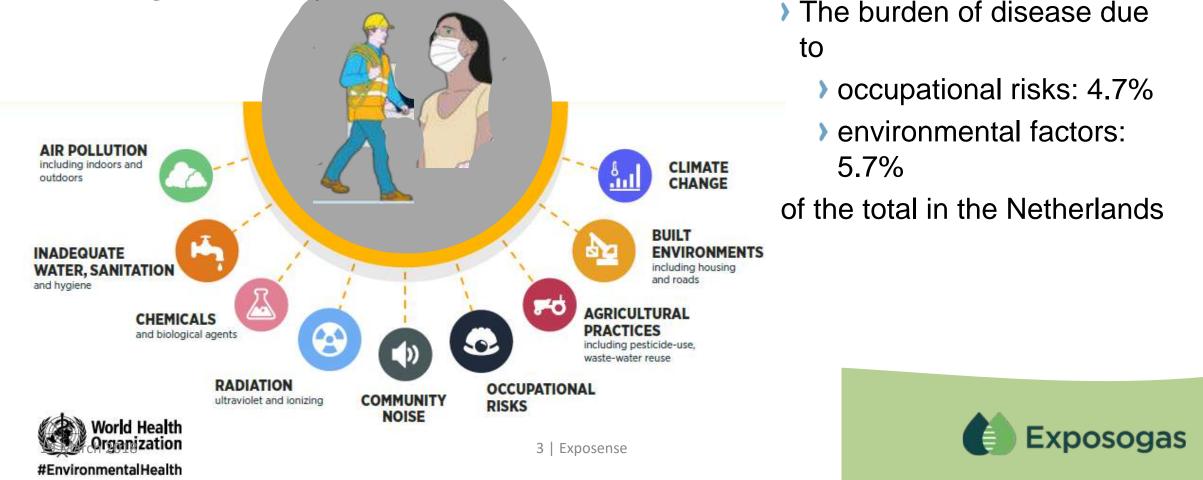
Internal Exposome Rob Stierum, PhD, ERT. TNO on behalf of all Exposogas partners

About TNO

• Organisation:

 TNO, the Netherlands Organisation for applied scientific research TNO, was founded by law in 1932 to enable business and government to apply knowledge. As an organisation regulated by public law, we are independent: not part of any government, university or company.

• Mission:


• TNO connects people and knowledge to create innovations that boost the competitive strength of industry and the well-being of society in a sustainable way.

Complex exposures at home/ at work

 Lack of knowledge on the associations between risk factors and health is limiting effective prevention

Necessity to consider occupational exposure in relation to health

• Impact of occupational diseases:

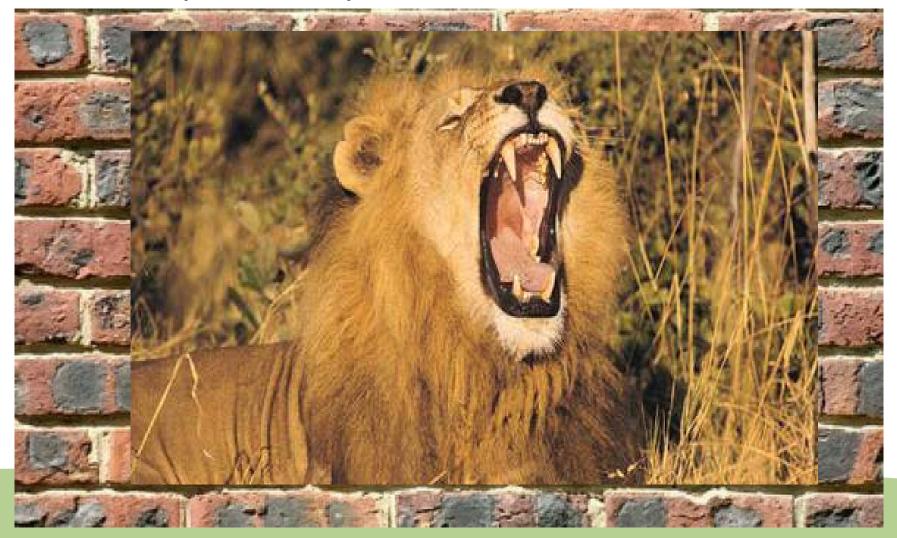
4

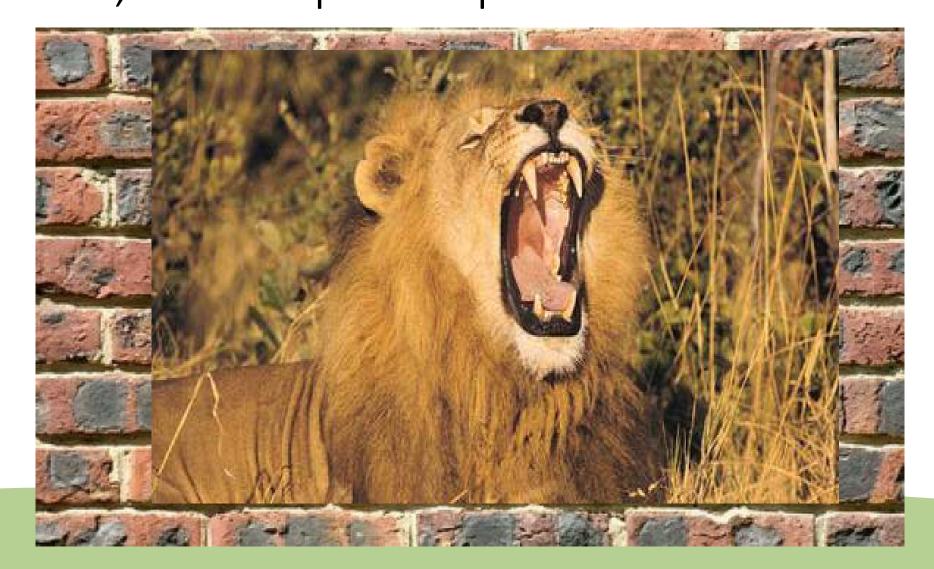
		Disease burden (%)	Death (x1000)		Health care costs (euro x miljard)	
Ä	Chemicals/ work environment	3,0%	****	4,1		1,1
•	Psychological burden	0,9%		0,0	9	0,2
Ŕ.	Physical burden	0,7%		0,0	8	0,3

Occupationa

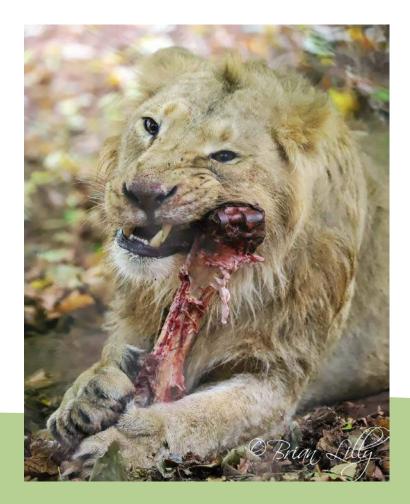
First, to get a feel for chemicals

- hazard, exposure and risk
- some lions and rabbits


hazard, no exposure = no risk



hazard plus exposure = risk



Not yet, as internal exposure is needed (biting through your skin and beyond!)

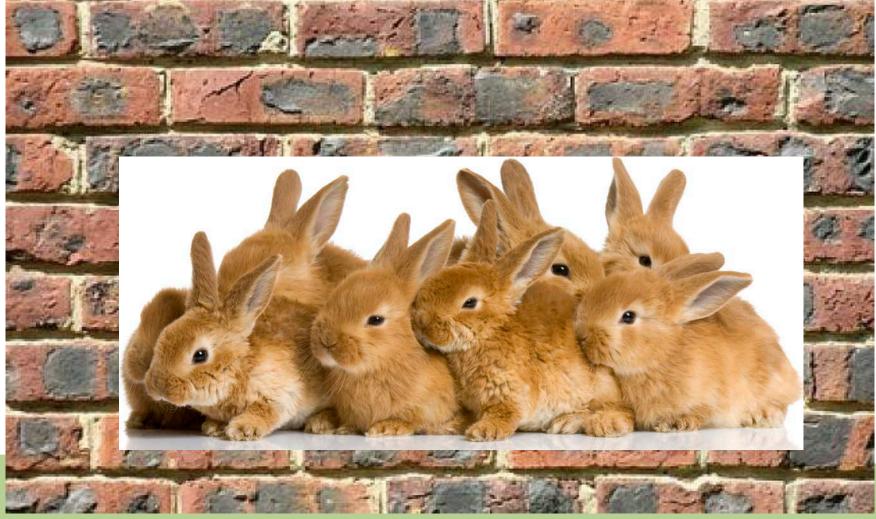
Exposure/dose level matters. More lions \rightarrow increased exposure \rightarrow increase in risk

Dosis facit venenum

"Was ist das nit *Gifft ist? Alle* Ding sind Gifft und nichts ohn *Gifft. Allein die* Dosis macht, das ein Ding kein Gifft ist."

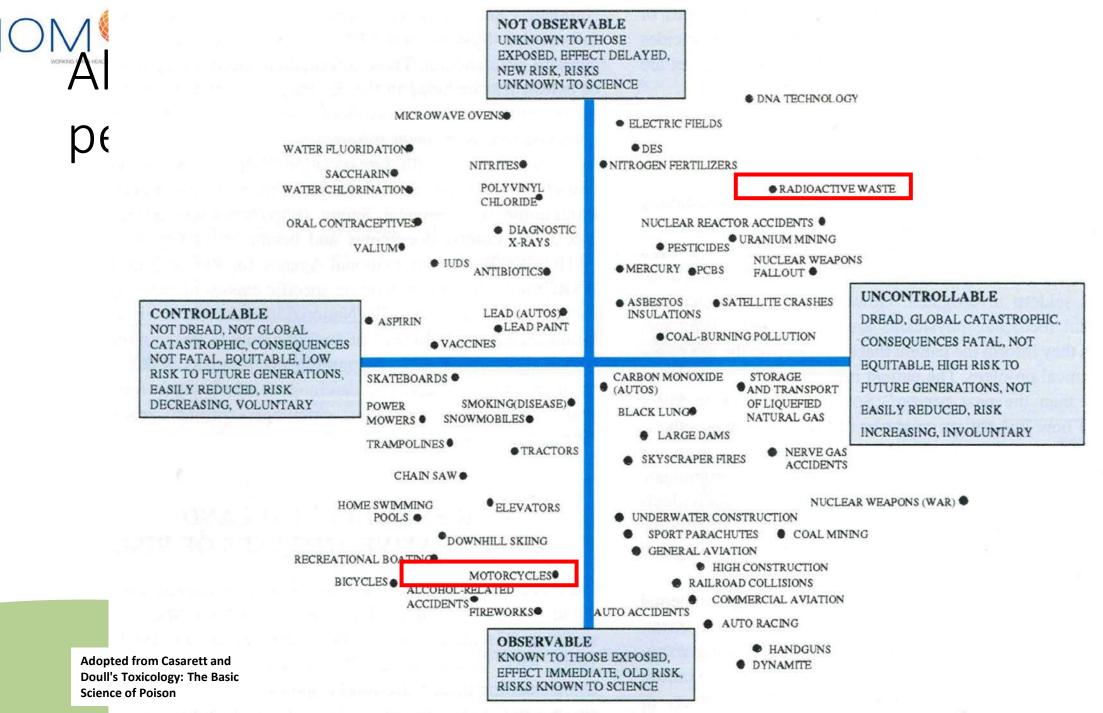
Paracelsus (1493-1541)

Paracelsus (1493–1541), founder of modern toxicology, "The dose makes the poison".


30
CYPRUS INTERNATIONAL INSTITUTE
DOD BUILDING OF BUILDING A DAUDA TO THE COMPLE

chemical	LD50 mg/kg body weight	gram intake at 70 kg bo	ody weight
water	14000000	9800	
glucose	3500000	2450	~10 liter of water
Sodiumchloride	3700000	259	
Potassiumiodide	300000	21	
Arsenic trioxide	45000	3.15	
Potassium cyanide	10000 2450	0.7	
Sulfur mustard	3000	0.21	
Strychnin	500	0.035	
Sarin	20	0.0014	730 tablets of
Fedrodotoxin	5	0.00035	
Ricin	0.02	0.0000014	DEXTRY
Tetanus toxin	0.0001	0.00000007	ENER
Botulin toxin	0.00003	2.1E-09	

LD50 = dose level at which mortaility occurs in 50% of the population



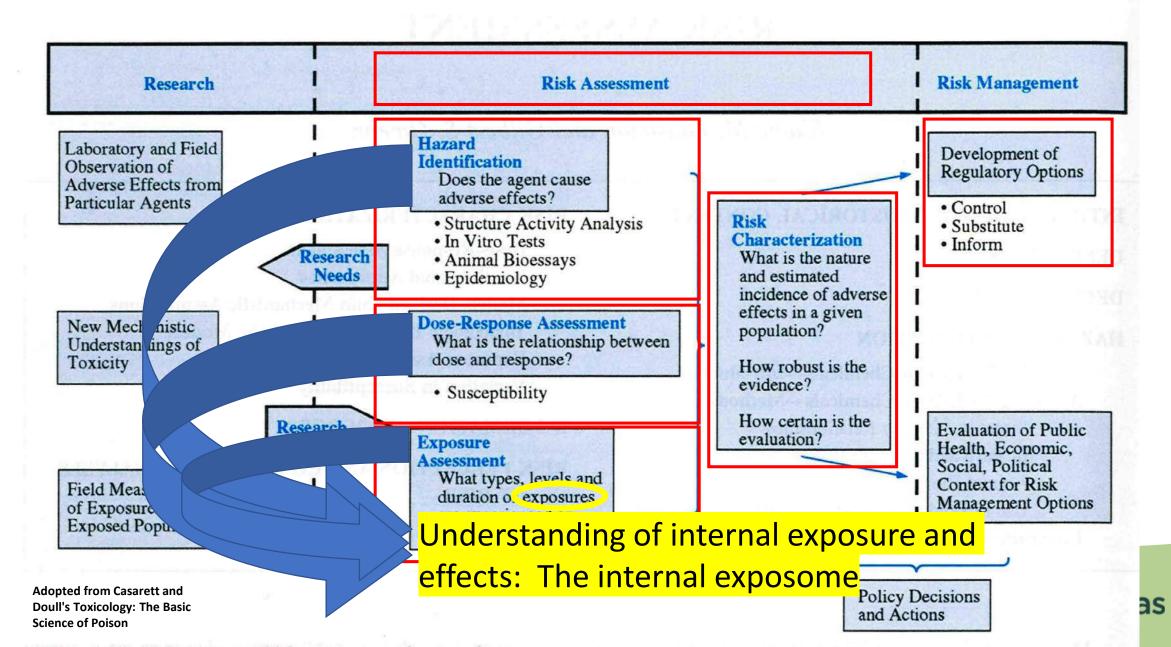
• Just the fact that a chemical is present, does not mean it is harmful to humans, at the amount that is present

 In addition, perception of risks comes into play: The more uncontrollable and unobservable risk are

the more severely risks are perceived

osogas

For health risk management, thresholds to ensure maximum exposure levels need to be in place

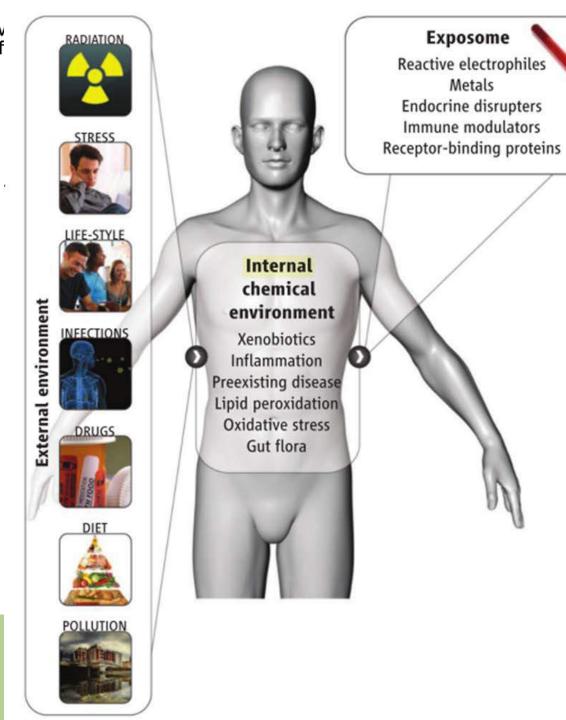

- Acceptable daily intake (nutrition)
- Occupational exposure limit (profession)
- maximum concentration in air (environmental threshold)
- Maximum daily dose (drugs)
- And maximum possible exposures should not exceed these
- Risk assessment needed!

10 84

UNIT 1 GENERAL PRINCIPLES OF TOXICOLOGY

To define a hazard, possible foreseeable internal effects (binting of lions)

Definition of the internal exposome


The internal exposome is composed of all stressors once present in the body:

- chemicals from air, water, soil, food,
- Breakdown products (metabolites) from these
- endogenous chemicals produced by inflammation, oxidative stress, lipid peroxidation, infections, gut flora, and other natural processes

From Environment and Disease Risks Stephen M. Rappaport and Martyn T. Smith Science 330 (6003), 460-461.

Definition of the internal exposome

The internal exposome is composed of all stressors once present in the body:

- Can be measured in biofluids/excreta (blood, urine, sputum, stool, exhaled breath etc.)
- Can yield signatures of internal exposure

Definition of the internal exposome

The internal exposome is composed of all stressors once present in the body:

- Can provide indications for early health effects
- Can help to assist in ensuring risk management
 - Detecting exposure and effects in humans
 - Proposing biological effect levels
 - blood levels at which an effect is expected
 - Detecting the effect of exposure reducing measures

Why characterizing the internal exposome?

- In relation to external exposome
 - If suspected/known exposures: Is a chemical/stressor actually entering into the body?
 - If unknown exposures: which chemicals/stressors are persons exposed to?
 - Totality of external exposures is taken into account
 - Is somebody truly exposed?
 - Use internal exposome/markers to predict the extent of possible external exposure?
 - Use to define efficacy of exposure reducing measures
 - How many subjects are exposed? Group based risk assessment

Why characterizing the internal exposome?

- In relation to possible health effects
 - If the stressors/chemical is identified within the internal exposome
 - Estimation of hazards using existing toxicological data, using epidemiological data
 - Estimation of (individual) metabolism/metabolic processes: are potentially hazardous metabolites formed?
 - Individual susceptibility
 - Quantitative determination of internal exposure in relation to early markers of health and disease effects
 - E.g. binding of a chemical to DNA or a protein
 - Early cytogenetic changes

within the internal exposome

- Important to identify *hazardous* molecules
 - all molecules within the exposome are in a way hazardous, depending on type of hazard and extent of exposure (and exposure route)

within the internal exposome

- Prioritize at which exposure *levels* health effects are to be expected
 - External exposures in relation to external exposure treshholds (Occupational exposure limit, ADI)
 - Internal exposures in relation to external exposure levels
 - Internal exposures in relation to internal Biological Effect Levels

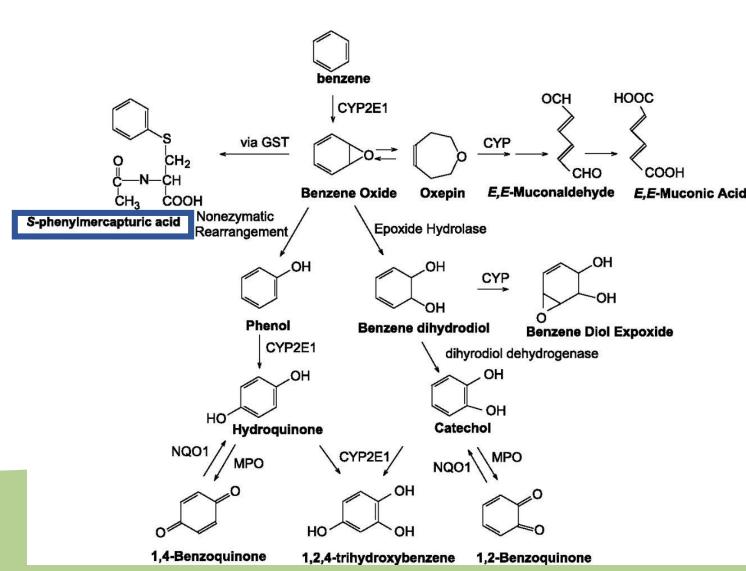
		Qua	antification		
	What/how much gets in	which biomolecule is target	activation of pathways/ biology	prediction health effect	Biomarkers to detect interna exposure and health effect
External exposu	Internal exposure	Molecular initiating events	Advers outcome pathway	Toxic effects	Biomarkers
Inhalation	Target organ concentration over time	Protein / Receptor binding / interaction	Altered gene Immune system expression activation		
Ingestion	without under	standing of th	ne internal effec	ts of the	
	exposome, it is	s not possible	to connect to h	ealth status,	,
Dermal absorptic	susceptibility a	and propose (individualized)	health-based	l
	interventions i	in relation to	external stresso	rs.	
U -	Time (h)		Liver fibrosis		
External exposu studies / mode	PBPK / PBTK modeling	<i>In vitro</i> studies, Computational chemistry	Omics experiments, Systems biology	Organ-on-a-chip, Epidemiological data	Biomonitoring studies

Some technology examples along this paradigm


- Ongoing work at TNO , with partners
- No need to understand all details
- To give a flavour of possibilities to prepare for the group assignment

What/how much gets in? I: Biomonitoring

What/how much gets in



An example: benzene

• Relevant for occupational setting (petrochemical industry)

Detection of SPMA, a metabolite of benzene

 developing a robust fluorescent immunosensor for user-friendly, sensitive and fast biological monitoring of benzene exposure in a field situation.

The development of a 'point of care' fluorescent immunosensor for the benzene biomarker S-PMA in human urine

Kees Koopal*, Sjaak van Veen*, Anjoeka Pronk*, Tim Meljster*, Jan Urbanus* & Paul Aston* *Netherlands Orgenization fix Asplied Scientific Research (TNO), *Shell International, *AB Biomonitoring Corresponding author: cees loopal@itmonit

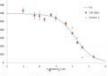
Introduction

Biomonitoring to assess occupational exposure to benzene is currently performed with ELISA or HPLC to measure S-PMA in unite.

This project aims at developing a volue fluorescent immunosensor for user-friendly, sensitive and fast biological monitoring of benzene exposure in a field situation. The feasibility of the developed fluorescent S-PMA immunosensor was demonstrated in a urine sample mattls. The investigations to arrive at a POC instrument based on the fluorescent immunoisasy are outlined.

Results

The new assay can be depicted as a fluorescent immunochemical intibition assay. Anti-PMA antibodies are first labelled with a fluorescent probe. Burthermore, the surface of a glass slide is costed with an S-PMA protein conjugate.


In the assay facil, the fluorescendy labeled antibudes are first diluted to a face concentration is assay buffer. The calibrations and samples are then incubated with the antibudy at a temporature of ST $^{\circ}$ C for 1 hour, so that the S-PMA that is present in the samples is adivend to bind to the antibudes in solution.

Following the incubation step, the calibration and samples are placed in a DEwels format on the glass slide that is costed with the SPMA conjugate and the remaining the samples at SP \sim for another hour. Following this second incubation, the glass slide is rinead and dried and the resulting fluorescence from the labeled antibodies on the glass slide, is measured.

Photograph of the 95-wells away format.

The tribibion away was performed with a 1,2000 dilution of the labeled antibody, mixed 1,15 (rel/vol sample/antibody) with either the sample or the calibrator union. The calibrators were prepared by wolking S-PMA in a pool of union from 6 human denors (male and female). The samples were prepared by spiking S-PMA in the union from includidual donors.

Pict of easy results for calibrators in urine pool (a) and measurements of urine samples (\blacktriangle) from volumeer #2, including the fitted calibration curve

POC-Instrument

The laboratory set-up of the assay instrumentation provided the basis for the POC-instrument that will be developed in the next phase of the project.

Experimental set-up for POC-instrument

Conclusions

A floorescent inhibition immunosasy for SPMA in human urine was successfully developed and validated. The results of the assay were reliable and accurate. The detection limit obtained was 1.5 mB SPMA in urine, corresponding to the current exposure limit for bearsen. The reproducibility of the measurements in the higher concentration range was slightly befter than the one obtained at lower concentrations.

Outlook

Further research is in progress to increase the sensitivity of the assay and to develop a dedicated POC-instrument.

Acknowledgements

We kindly acknowledge MeasstadLab for the provision and analysis of human urine samples.

fluorescent inhibition immunoassay for S-PMA in human urine was successfully developed and validated. The detection limit obtained was 1.5 nM S-PMA in urine, corresponding to the current exposure limit for benzene.


Plot of assay results for calibrators in urine pool (\blacksquare) and measurements of urine samples (\blacktriangle) from volunteer #2, including the fitted calibration curve.

Point of care assay

• The feasibility of the developed fluorescent S-PMA immunosensor was demonstrated in a urine sample matrix. The investigations to arrive at a POC instrument based on the fluorescent immunoassay are outlined.

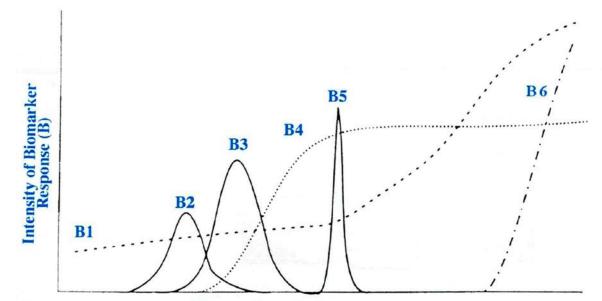
Experimental set-up for POC-instrument.

Future fluid sensing Wearables – sweat analyser

A possibility

• Sweat. Monitoring sweat as a key biometric is not new. Sweat contains biomarkers like sodium, glucose, and proteins that can be collected and measured noninvasively using sensors. Sweat has been used to monitor other conditions like cystic fibrosis, but now sweat can be used to monitor nutritional deficiencies, ion imbalances, elevated glucose levels and inflammation that industrial workers experience. Sweat can even tell a doctor if your medicines are not working properly.

https://www.forbes.com/sites/jenniferhicks/2017/04/29/how-this-wearable-smart-patch-analyzes-your-sweat-to-monitor-your-body/#68ae7c244b02


https://www.kenzen.com/patch

Gao, W. et al. Nature http://dx.doi.org/

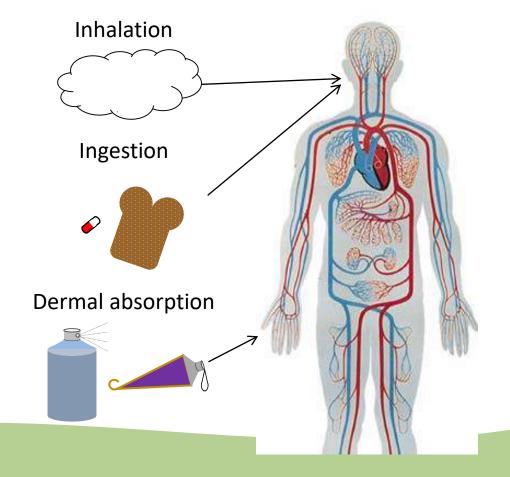
Biomarkers are suitable for internal exposure estimation, quantification may depend upon dose and time of exposure! Meaning....?

Time or Dose Scale

Figure 4-6. Hypothetical biomarker response relationships.


This figure illustrates a variety of dose-related biomarker responses shown as biomarker intensity (B) plotted against dose or time. The text expands upon the potentially complex relationships between biomarkers of early effect versus toxicity that can occur when very sensitive molecular biomarkers are utilized for toxicity assessment. (Adapted from Waterfield and Timbrell, 1999, and Depledge, 1993.)

What/how much gets in? II PBPK modelling


What/how much gets in

TNO's generic physiologically-based toxicokinetic-toxicodynamic (PBTK-TD) modeling tool

Goals:

- To predict blood and organ 1) concentrations (toxicokinetics) and the toxic effects (toxico-dynamics) of chemicals in humans based on in silico, in vitro and in vivo data
- 2) In vitro-in vivo and animal to human extrapolation of toxicity data
- To establish safe exposure limits and 3) appropriate safety measures for new chemicals

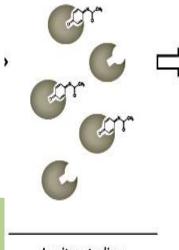
Parent compound Primary metabolite Secondary metabolite ↓ Iungs Iungs **↓** Iungs heart heart heart dermal dermal dermal 💐 skin X skin skin oral oral oral stomach stomach stomach s. intestine s. intestine s. intestine i.v. i.v. i.v. ÷ colon colon colon -£--£-÷ (non-)linear venous blood arte bloo rteria bloo rteria spleen spleen spleen ial blood metabolism venous venous l blood l blood pancreas pancreas pancreas liver liver liver --brain brain brain muscle muscle muscle adipose adipose adipose remaining remaining remaining

Urine

Urine

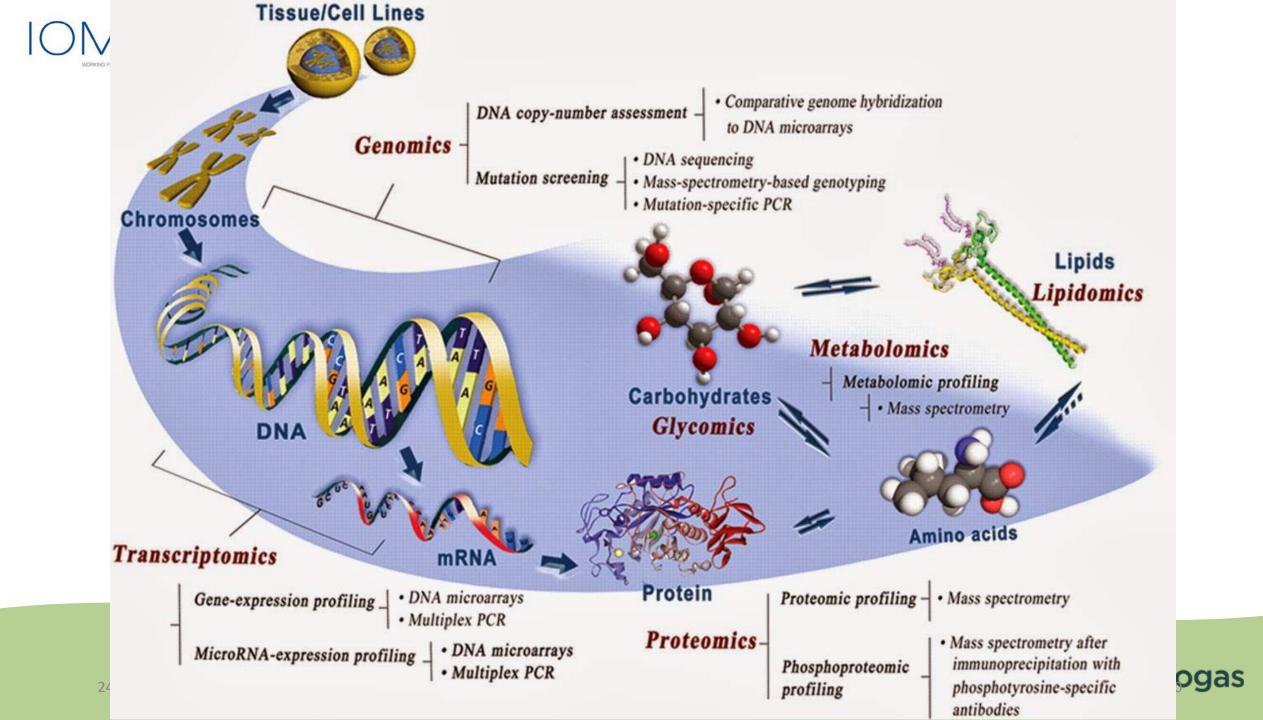
Urine

PBPK model prediction of concentration of benzene metabolites in bone marrow



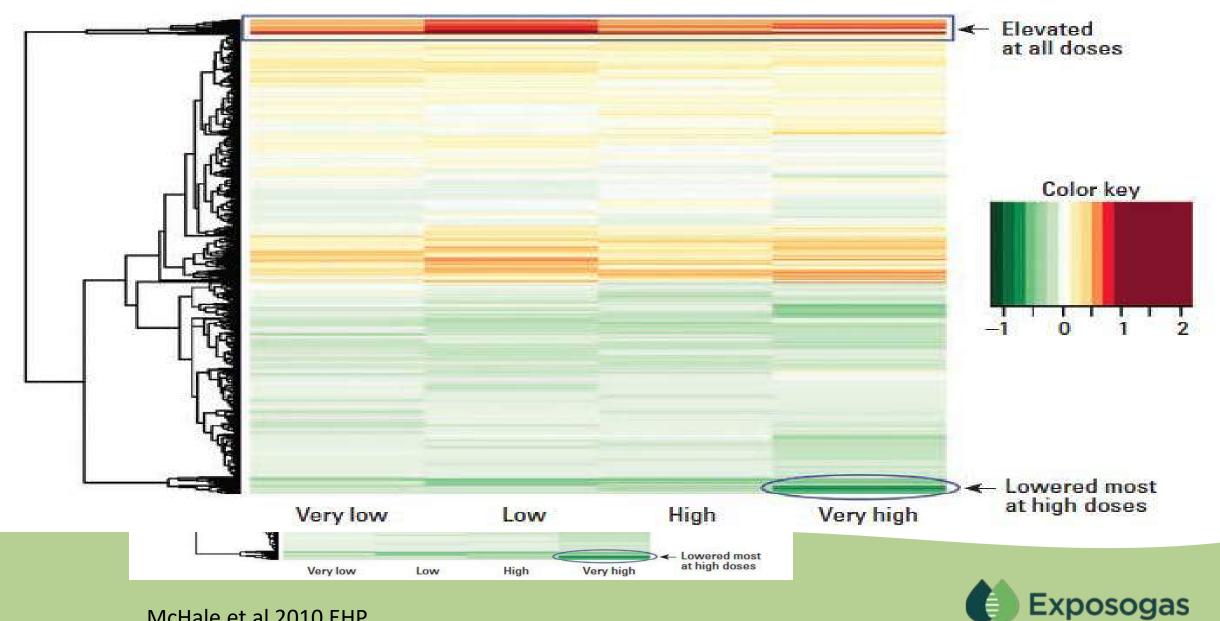
Which biomolecule is target: I: comparison with omics data which

biomolecule is target


Molecular initiating events

Protein / Receptor binding / interaction

In vitro studies, Computational chemistry



McHale et al 2010 EHP

10000

Table 4. Potential biomarkers of benzene exposure based on gene expression ratios relative to unexposed controls.

			Benzene exposure category							
			Very lo	w (n = 29)	Low	(<i>n</i> = 30)	High	n (<i>n</i> = 11)	Very hi	igh (<i>n</i> = 13)
Probe ID	Symbol	Definition	Ratio	p-Value ^a	Ratio	p-Value ^a	Ratio	<i>p</i> -Value ^a	Ratio	<i>p</i> -Value ^a
5090327	SERPINB2 ^b	serpin peptidase inhibitor, clade B, member 2	2.47	0.002	5.19	0.000	3.03	0.005	3.39	0.001
2370524	TNFAIP6	tumor necrosis factor, alpha-induced protein 6	2.26	0.000	2.94	0.000	1.72	0.030	2.13	0.000
6590338	IL1A ^b	interleukin 1, alpha	2.00	0.001	3.03	0.000	2.36	0.000	2.53	0.000
1260746	KCNJ2	potassium inwardly-rectifying channel, subfamily J	1.97	0.000	2.54	0.000	2.09	0.000	1.56	0.012
2230131	PTX3 ^b	pentraxin-related gene, rapidly induced by IL-1 beta	1.80	0.000	2.30	0.000	1.62	0.003	1.81	0.000
5860333	F3	coagulation factor III (thromboplastin, tissue factor)	1.73	0.003	2.83	0.000	1.78	0.034	2.41	0.001
1410189	CD44 ^b	CD44 antigen (Indian blood group)	1.64	0.000	1.76	0.000	1.64	0.005	1.78	0.000
2470100	CCL20	chemokine (C-C motif) ligand 20	1.63	0.005	2.30	0.000	1.59	0.041	2.11	0.000
4880717	ACSL1	acyl-CoA synthetase long-chain family member 1	1.63	0.001	1.79	0.000	1.59	0.010	1.68	0.002
1470682	PTGS2 ^b	prostaglandin-endoperoxide synthase 2	1.60	0.000	1.98	0.000	1.68	0.003	1.75	0.000
1770152	CLEC5A	C-type lectin domain family 5, member A	1.57	0.009	2.26	0.000	1.78	0.014	2.26	0.000
4060674	IL1RN	interleukin 1 receptor antagonist	1.55	0.003	2.26	0.000	1.54	0.020	1.61	0.004
7320646	PRG2	proteoglycan 2, bone marrow	1.37	0.011	1.83	0.000	1.5	0.007	1.69	0.000
650709	SLC2A6	solute carrier family 2, member 6	1.36	0.005	1.72	0.000	1.5	0.000	1.60	0.000
2900286	GPR132	G protein-coupled receptor 132	1.34	0.047	1.87	0.000	1.6	0.003	1.80	0.000
3710379	PLAUR	plasminogen activator, urokinase receptor	1.29	0.035	1.80	0.000	1.6	0.002	1.58	0.001

Genes shown are up- or down-regulated \geq 1.5-fold relative to unexposed controls at three or four doses. *PFDR-adjusted p-value* (Benjamini and Hochberg 1995). *B*Genes that have *p-values* \leq 0.005 at all four doses.

Environmental Health Perspectives • VOLUME 119 | NUMBER 5 | May 2011

McHale et al 2010 EHP

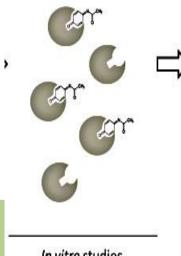
631

Omics and aggregated exposure pathways

A	ggregate Exposure F	athway (AEP) (Eco)Expos	Adverse Outcome Pathway (AOP)				
	ironment	Internal Exposure Target Site Exposure MIE	KE(s) Cellular System Adverse Outcome				
Experimental Tools & Targets	Chemical Analytics (Target and Non-target Mass Spectrometry) Exogenous Chemicals Endogenous Chemical Transformation Products and Metabolites Transformation Products and Metabolites						
	Metabolomics in chemico Adductomics DNA-, Protein-Adducts Signaling Chemicals						
	Proteomics	Receptors	Proteins/markers of adaptive stress responses				
	Transcriptomics	Up/down regulation of transporters and metabolic enzymes	Up/down regulation of receptors of adaptive stress responses				
Exp	Bioanalytical Tools	Receptor/target affinity in silico docking in vitro HTS s	Biological activity screening & reporter gene assays				

Fig. 3. Interface between the (eco)exposome (in red), the aggregate exposure pathway (AEP, green) and adverse outcome pathway (AOP, blue). The red dashed boxes represent chemical components of the exposome. The AEP/AOP concept allows one to disentangle key events and allocate them to steps from the source of exposure to adverse effects. The grey boxes indicate experimental methods to quantify the chemical components of the exposome and the biological components of the AOP. Figure partially adapted from Teeguarden et al. (2016).

innovation

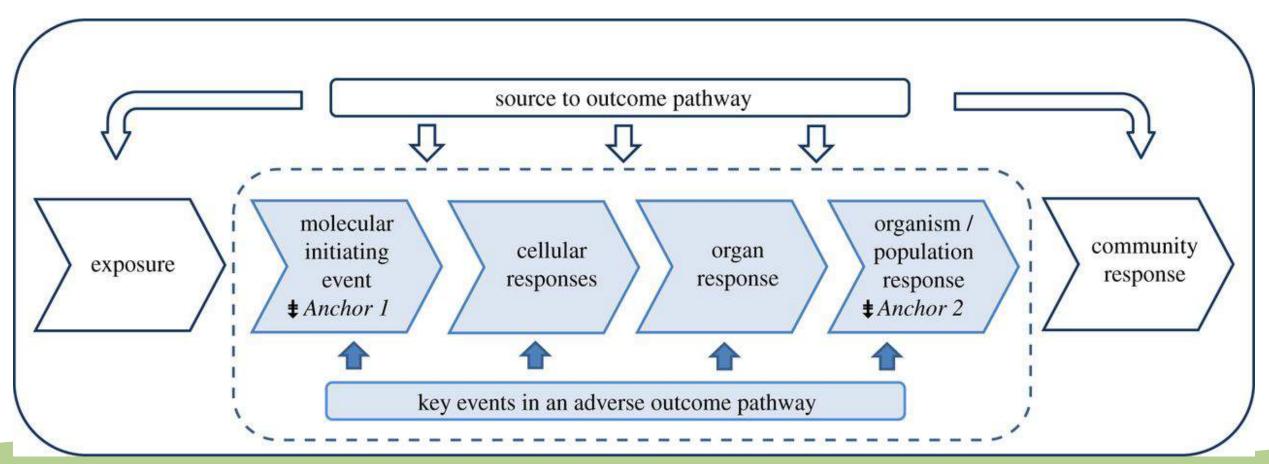

Л

¹Which biomolecule is target: II: Biomolecular data computing framework for prediction of molecular effect

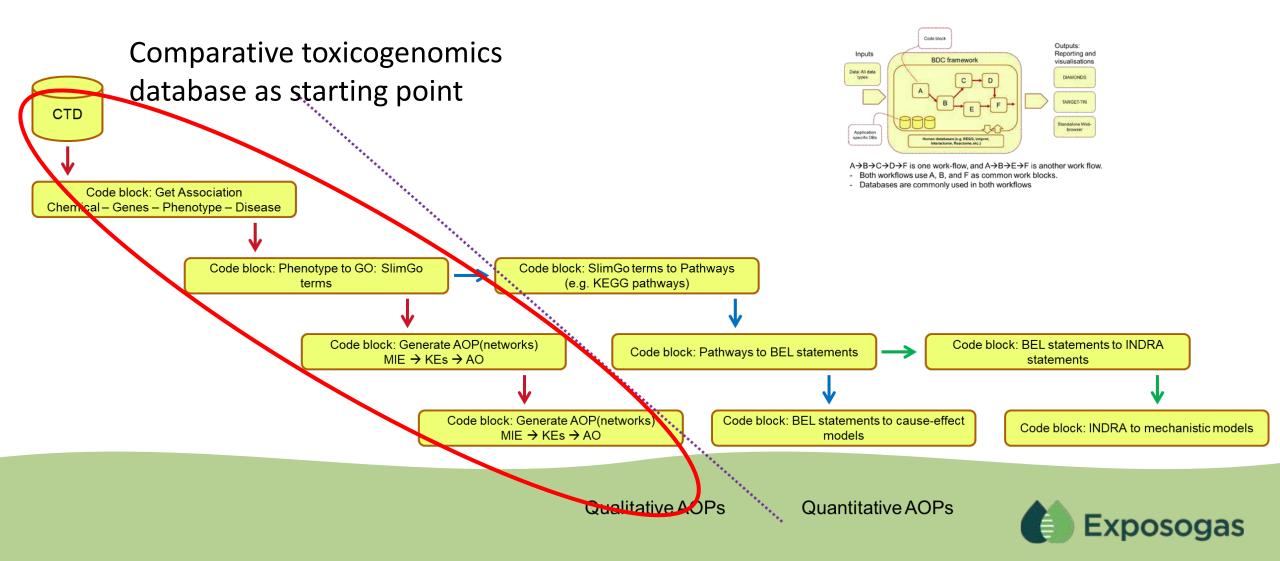
which biomolecule is target

Molecular initiating events

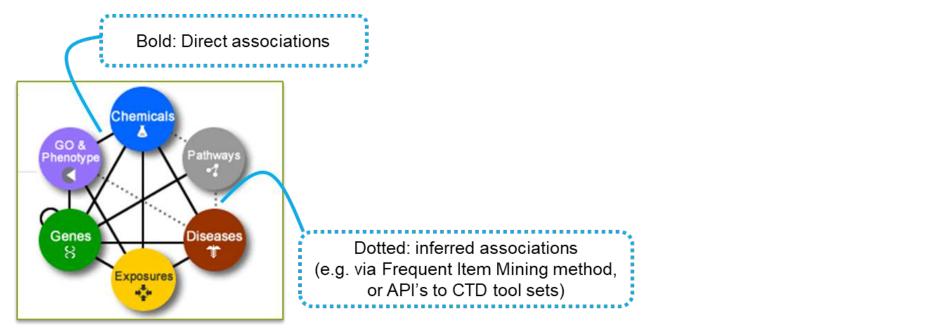
Protein / Receptor binding / interaction



In vitro studies, Computational chemistry


ADVERSE OUTCOME PATHWAY

BDC work-flow for AOP generation



Case study: Benzene computational approaches to develop Qualitative AOP network generation

Comparative Toxicogenomics Database

exposure health outcome

[Chemical - GO & Phenotype (Slim GO) - Disease] associations are extracted

Biological processes or functions

Acknowledgements

Internal exposome modelling

Bernice Schaddelee-Scholten, Shaji Krishnan, Sander Ruiter, Mariël van Stee, Fred van de Brug, Joost Westerhout, Eugene van Someren, Jelle Vlaanderen, Roel Vermeulen, Rob Stierum

SPMA biomonitoring Kees Koopal, Sjaak van Veen (TNO), Tim Meister, Jan Urbanus (Shell), Paul Aston (AB BiomonitoringJ

TNO research programs on Exposome: Anjoeka Pronk

